翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

lateral line : ウィキペディア英語版
lateral line

The lateral line is a system of sense organs found in aquatic vertebrates, mainly fish, used to detect movement and vibration in the surrounding water. The sensory ability is achieved via modified epithelial cells, known as hair cells, which respond to displacement caused by motion and transduce these signals into electrical impulses via excitatory synapses. Lateral lines serve an important role in schooling behavior, predation, and orientation. For example, fish can use their lateral line system to follow the vortices produced by fleeing prey. They are usually visible as faint lines running lengthwise down each side, from the vicinity of the gill covers to the base of the tail. In some species, the receptive organs of the lateral line have been modified to function as electroreceptors, which are organs used to detect electrical impulses, and as such these systems remain closely linked. Most amphibian larvae and some fully aquatic adult amphibians possess mechanosensitive systems comparable to the lateral line.
==Function==

The lateral line system allows the detection of movement and vibrations in the water surrounding an animal, providing spatial awareness and the ability to navigate in space. This plays an essential role in orientation, predatory behavior, and social schooling.
In a 2001 study, researchers demonstrated that the lateral line system was necessary to detect vibrations made by prey and to orient towards the source to begin predatory action. Fish were able to detect movement, produced either by prey or a vibrating metal sphere, and orient themselves toward the source before proceeding to make a predatory strike at it. This behavior persisted even in blinded fish, but was greatly diminished when lateral line function was inhibited by CoCl2 application. This cobalt chloride treatment results in the release of cobalt ions, disrupting ionic transport and preventing signal transduction in the lateral lines.〔Karlsen, H. E., & Sand, O. (1987). Selective and Reversible Blocking of the Lateral Line in Freshwater Fish. Journal of Experimental Biology, 133(1), 249 -262.〕 Further trials using either a gentamicin dip or external scraping of the lateral lines, to disrupt canal and superficial receptors respectively, demonstrated that these behaviors were dependent specifically on mechanoreceptors located within the canals of the lateral line.〔
The role mechanoreception plays in schooling behavior was demonstrated in a 1976 study by Pitcher, et al. A school of ''Pollachius virens'' was established in a tank and individual fish were removed and subjected to different procedures before their ability to rejoin the school was observed. Fish that were experimentally blinded were able to reintegrate into the school, while fish with severed lateral lines were unable to reintegrate themselves. Therefore, reliance on functional mechanoreception, not vision, is essential for schooling behavior.〔Pitcher, T., Partridge, B., & Wardle, C. (1976). A blind fish can school. ''Science'', 194(4268), 963 -965. 〕 A study in 2014 suggests that the lateral line system plays an important role in the behavior of Mexican blind cave fish (Astyanax mexicanus). they changed as they get older

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「lateral line」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.